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I. INTRODUC T I O N  

Under Subcontract RL-30107 of Contract NAS 9-858, Avco- 

RAD has undertaken a study of various methods of solution of the 

flow fields over blunt bodies. 

were presented in Reference 1. 

of the flow of equilibrium air over a blunt body at zero angle 

of attack has been submitted to NASA &BC and is described in 

Interim results of this study 

A program for the determination 

Reference 9. A comparative analysis of the methods of integra- 

tion in current use led to the selection of the method of inte- 

gral relations as most suitable for the determination of three- 

dimensionak flow fields. A computational procedure employing the 

method of integral relations has been developed which is relevant 

to the moderate angle-of-attack range of interest. 

The conclusions of the comparison of integration methods 

and the formulation of the method of integral relations are 

presented in this final report. 

the configuration of the dividing streamline, which yields 

Attention has been given to - -_ .-- 

sufficient information for the integration procedure to be 

properly posed. Emphasis has been placed on obtaining a rela- 

tively simple method of computation in order to minimize pro- 

gramming difficulties, while at the same time retaining a level 

of approximation adequate for engineering purposes. 
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11. REVIEW OF TWO-DIMENSIONAL AND AXISYMMECTRIC SOLUTIONS 

Several approaches to the blunt body flow problem at zero 
- 

angle of attack are established theoretically and have been 

reviewed to determine their suitability for the angle-of-attack 

problem. Most of these approaches are summarized in Chapter 6 

of Hayes and Probstein. 

techniques for integrating the inviscid equations of flow in 

the subsonic or subsonic-supersonic region. A complete inte- 

gration covers the flow field up to the limiting characteristic - 
that is, the characteristic (or characteristics) farthest down- 

stream which intersects the sonic line - since disturbances in 

2 
They consist of various approximate 

the supersonic flow may otherwise affect the subsonic region 

through th? sonic line. In order to provide input for method 

of characteristics calculations, it is necessary to extend the 

integration somewhat downstream of the limiting Characteristic 

in order to avoid computational difficulties near Mach 1. 

Expansion techniques valid near the axis of symmetry and 

the like are useful, but many terms in the expansion series 

are required to give sufficient detail for flow field prediction. 

The inverse problem has been treated successfully by several 

authors. In this approach, a shock shape is assumed and the 

integration is then carried out as if the problem were of the 

initial value type. Using initial conditions computed at the 

specified shock, the equations are numerically integrated in 

some manner until the computed value of the stream function 

vanishes, say; this locus of points is the resulting body shape. 

Since such a procedure is not mathematically stable when applied 

- 2- 



to elliptic (in this case, subsonic) systems of equations, either 

a smoothing technique must be employed to remove oscillations 

and irregularities from the solution, or some other method must 

be used to avoid the instability. 
3 

Zlotnick and Newman , among several papers 4, 9 

the same basic concept, solved the inverse problem by a straight- 

forward finite-difference method. They smooth out unwanted 

oscillations by systematic fitting of polynomials. 

and Ferri also treat the "transonic" region between the sonic 

line and the limiting characteristic in a consistent manner by 

integrating along characteristics. 

employing 

Vaglio-Laurin 
4 

7 9 8  Garabedian and Lieberstein , an adaptation of whose method 
for equilibrium air appears in Reference 9 and has been submitted 

to NASA MSC, introduce a complex transformation which, in a sense, 

alters the nature of the equations of motion from elliptic to 

hyperbolic, thereby circumventing the instability problem. The 

integration from the shock to the unknown body is carried out 

in the complex domain, and the results are then projected onto 

the real plane. The stability of the procedure is rooted in 

the possibility of analytically continuing the functions into 

the complex domain. 

The direct problem, in which the body shape is given and 

the flow field, including the shock, is solved for, has been 

treated by Emmons et al. using a streamtube technique. Initial 

approximations to the shock shape and body pressure distribution 

are assumed, and the resulting flow field is determined by the 

streamtube relations. An iterative scheme is employed to correct 

the shock shape and pressure distribution until the difference 

10 
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between two successive solutions is slight. 

All the methods described above can in principle be gen- 

eralized to the case of a blunt body at angle of attack. 

perturbation technique can be formulated for small angles of 

attack, as has been done by Vaglio-burin and Ferri' for the 

finite-difference marching procedure, although they present no 
11 

results. Swigart perturbs the equations of motion in the 

small angle of attack and at the same time develops a solution 

in the form of a series expansion valid near the axis of 

symmetry of the shock wave (i.e., near the stagnation line). 

The angle of attack perturbation permits the dependence on the 

meridional coordinate to be eliminated, and the series expan- 

sion results in a set of ordinary differential equations that 

are integrated inward from the given paraboloidal shock. 

Swigart's results for zero angle of attack agree well with ex- 

perimental and other theoretical results for spherical bodies 

and ellipsoidal bodies of moderate eccentricity, even up to 

the sonic point; however, his expansion procedure would not be 

expected to be accurate for blunt bodies with relatively small 

corner radii, unless many terms in the series were retained. 

A 

Swigart observes that his computed body (dividing) stream- 

line at angle of attack differs from the streamline that passes 

through the point where the shock is normal to the free stream 

vector--in other words, the body entropy is not the maximum 

entropy in the flow field. 

entropy is still a matter of controversy and is discussed in 

Sections IV and V. 

The important question of the body 

- 4- 
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12,13 
The direct solution of Belotserkovskii is based on 

14 
the method of integral relations formulated by Dorodnitsyn 

The flow field between the body and the shock is split up into 

a number of equally spaced strips, and the equations of motion 

are integrated from the body to each strip boundary. 

expressions are assumed for the dependent variables in the 

direction normal to the body; upon substitution in the integrated 

equations, there is obtained a set of ordinary differential 

equations for the coefficients of the polynomials in terms of 

the coordinate along the body. These equations are solved with 

assumed values of the stagnation point standoff distance and 

. 

Polynomial 

the initial velocities at the strip boundaries, and the solution 

is iterated so as to satisfy properly singularities which occur 

at the sonic line. Traugott and Holt have presented versions 

of this method. 

15 16 

17 18 
The papers of Bazzhin and Minailos represent important 

recent Soviet work in the field of blunt body flow at large angles 

of attack. Both apply the method of integral relations with one 

strip in the direction normal to the body, Bazzhin to the two- 

dimensional flat plate problem and Minailos to the problem of 

a yawing axisymmetric body. Vaglio-Laurin , in addition to 
his treatment of the application of the PLK method to the calcu- 

lation of blunt-body flows, presents an analysis similar to 

19 

Bazzhin's for asymmetric two-dimensional shapes. Both Soviet 

authors make allowances for the possibility that the dividing 

streamline does not pass through the normal point of shock, 

-5- 
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but do not furnish the additional condition necessary for its 

determination. Bazzhin summarizes the results of his calcula- 

tions, which were performed with the initial assumption that 

the dividing streamline did pass through the normal point on 

the shock. He notes that for angles of attack sufficiently 

large ( > 30') that his resulting solution indicated that the 

initial assumption on the dividing streamline was incorrect, 

it was not possible to iterate the solution in order to obtain 

successive values of the entropy on the body. 

A comparison of the various methods developed for zero 

angle of attack flows, with a view to determining the most 

suitable approach for the calculation of flows past axisym- 

metric bodies at large angles of attack, reveals that the in- 

verse methods are conceptually simplest. With the problem of 

mathematical stability almost completely resolved, there is 

little difficulty in sketching the broad outlines of an inverse 

technique, in which the equations of motion are integrated in 

a step-by-step marching procedure starting from the given shock 

and working toward the unknown body. 

of the numerical method, however, is rather discouraging. A 

preliminary investigation o.f the Garabedian and Lieberstein 

method, for example, showed that the problems involved in 

formulating a method for integrating the equations in the com- 

plex domain were much more formidable than expected, and the 

approach was abandoned. 

difference method would have been required. 

A look into the details 

Essentially a three-dimensional finite- 

Such a method would 
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have tied up considerable computing machine storage capacity 

and would have been difficult to program, inasmuch as no 

previous programming experience on problems of that type was 

available. It was also recognized that the selection of the 

proper shock shape associated with a desired body would require 

a certain amount of experience, particularly for large angles 

of attack. The same objections applied to other inverse tech- 

niques. Although it would undoubtedly be possible to program 

one of these techniques, it would suffer from the same diffi- 

culties associated with the three-dimensional method of charac- 

teristics - excessive computing time, the laborious specifica- 
tion of input, and the constant attention of someone closely 

familiar with the program. 

Attention therefore has been centered on the direct 

methods. The streamtube method appears undesirable both from 

. the aspect of its formulation for three dimensions and from 

certain computational problems caused by the lack of accuracy 

in computing streamline curvatures numerically. 

integral relations has the advantage that the variation of pro- 

perties in the direction normal to the surface is taken into 

account through expansion in series and integration, so that 

there remains only the variation in two surface directions. 

Furthermore, the meridional variation can be approximated by 

Fourier series. Finally, the method allows a systematic treat- 

ment of the sonic surface, and the integration can be extended 

downstream to provide input for calculations of the supersonic 

flow. For these reasons, the method of integral relations has 

been adopted for the three-dimensional flow problem. 

The method of 

-7- 



111. CONFIGURATION OF THE DIVIDING STREAMLINE 

Consider a cylindrical coordinate system ( % , A )  e ) 

with velocity components (v, u, w), located at the stagnation 

point with H - axis perpendicular to the surface (Figure 1). 

Figure 1. Configuration of Coordinates at the Stagnation Point 

Expanding in Taylor series, 

u = a(e)r + d(8)R. 
w = b(0)r + e(e)n, 
v = f(e)r + c(e)n. 

But f ( e )  = 0 because v = 0 at M = 0, and c(S) = c = constant 

because otherwise v would not be single-valued along the h -axis. 

The vorticity 
(2 

in the ( f l , L , 9  ) directions, o r  

Since the tz -component must be finite at r = 0, e - d, = 0; then 

2b - a, = constant, since otherwise the vorticity would not be 

single-valued. 
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. 
I 

2 

The momentum equation gives ph = PA= )e = 0 because of the 

vanishing velocity, and similarly the equation of conservation 

of stagnation enthalpy gives h8 = h, = h e  =O. Hence all 

thermodynamic variables are stationary at the stagnation point. 

The continuity equation then gives 

t ' b - Q *  = o  

-9- 



But we showed above that e - de = 0. 

also have (b - ae ) e + (a + c)d = 0, 

which gives d = 0. 

Hence e = dB = 0. We 

. 

Therefore, all three components of the vorticity at the 

stagnation point are zero, and the velocity components in the 

neighborhood of the stagnation point have the form 

u = a (e)r 
w = b (B)r, 
v = c t l *  

Thus the outflow velocity u and the cross flow w vanish along 

the M -axis (r = 0) perpendicular to the body, and the stagna- 

tion streamline is perpendicular to the surface. 

. 
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N, FORMULATION OF THREE-DIMENSIONAL PROGRAM FOR EQUILIBRIUM AIR 

The coordinate system and basic equations employed in the 

one-strip analysis for angles of attack have been presented in 

Reference 1 and will not be repeated here. 

will be used in the present report. 

The same notation 

There follows an outline of the final equations and inte- 

gration method appropriate for the one-strip method. 

derivation of the initial conditions, use was made of the fact 

that the dividing streamline is perpendicular to the surface at 

the stagnation point (see the previous section). In the one- 

strip approximation, the dividing streamline becomes a straight 

line perpendicular to the body. This can be seen from the fact 

that the velocity component LL lacks any linear dependence on 

h in the vicinity of the stagnation point, so that, to be 

consistent with the linear approximation, it must vanish iden- 

tically along the stagnation point normal. In addition, the 

fundamental differential equation for uc cannot be satisfied 

at the stagnation point unless the value of u at the shock 

point opposite the stagnation point vanishes. 

In the 

It was therefore concluded that the initial shock angle 

must be such that Us, =0, and that the body entropy has the 

value associated with that shock angle. The problem then 

essentially reduces to the determination of the proper values 

of two parameters, the stagnation point location and initial 

shock detachment distance, which will allow the solution to be 

continued through the two sonic point singularities. 

- 1 1 -  



. ?  
In the fol lowing equat ions,  2 = fi . I n  p l ace  of t h e  

v a r i a b l e s  u , 7 (both 

be more convenient t o  s u b s t i t u t e  t he  v a r i a b l e s  u,  y , d def ined  

,Z 0) and 8 ( I % ), it w a s  found t o  .. 

by 

+ y above body axis 

below body axis 
( 9 )  1 - y 

Y =  

( i n  o the r  w o r d s ,  a Car tes ian  r a t h e r  than c y l i n d r i c a l  coord ina te ) ,  

6 above body axis 

= 1 r - 6  below body axis, 

and 

where A D  = r- J, . Also d e f i n e  A, = n - 8 ,  
func t ion  W is given by 

where t h e  plus  s i g n  is  se l ec t ed  f o r  

s ign  f o r  Y I R , C O U A ~ .  
Y L R , c m A ,  and t h e  minus 

The equations of motion reduce t o  t h r e e  ord inary  d i f f e r -  

e n t i a l  equations f o r  L14, 3( 

of t h e  va r i ab le s  a t  t h e  shock),  and e :  
( i n  t h i s  case an i m p l i c i t  func t ion  

-12-  
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Here 

(equation of state of equi- 
librium air given by curve 
fits with S6 = constant), 

(18) 

f c  = p (L,, S,! 
pG = p (4 S A  

- (&)  5.4 ) (curve-f it speed of sound). qG- - 
(19) 

The functions with subscript "S" are evaluated in terms 

of the variables by the equations 

I 
u, = v' & a  + - 2  =- L 

- 1 3 -  



where v 2 2 + 6-g. The constants .(,L, f.,,,k& ~ and k, are 

input, and 1/N 
method so that / 

fit equation of state of equilibrium air 

is determined at each point by the Newton-Raphson 

and ks are consistent with the curve- w% 
/', = /' ( p s ,  4s . 

The function = A ( v )  I o c A c yr , d ( -  Y) = n- A c y ) ]  

is defined as follows: 
A = C e r o  for / \ / I  i - R ,  'QD h l  1 

p - 8 ~  ALyks either given in tabular 1 for 

form as input ( Y > o ) ,  or, if a value of the input 

constant R is given, A = 
- I  [ y f ( h , - R 2 ) c - 4  fa r  y '0. 

2 RZ 

Here P I ,  R s ,  and 4, (7r 7 6 ,  '4- > Ti ) are input constants. 

The following functions depend on 

+ o r  l Y 1 L  - 8 ,  C m A ,  

A ( V I :  

I 

-14- 
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Equations (13) - ( /5 )  are solved for R,~mb, ,  u 2 o and for 

--I- - fl ~ _ L R , C ~ O , , U & D .  A t  the initial point d = d o  2 us, = O ) w i r i c h  

determines from equation (20>,  and s+ = 4e = S(bso,R,) from 
equations (23) and (24) and the curve-fit equation of state. 

A l s o  &=o at this point, The two unknowns are A, and E ,  . 
Since ),, = o , equation (13) has an indeterminate form 

at the initial point. 

is computed from the equation 

The initial behavior of the function Lf,  

-15- 



There will be two points, one in each direction, at which 
e .  

either l= = 0 or /U,l4 a+ ( whichever happens first). The t 

location of these points is determined in the following manner: 

1) If F-po, the integration is carried out to the 

point Y = ye) where F = 0 and stopped. The 

quantity 

is computed. 

If /LG)-7a4 , the integration is stopped at the point 2 )  
r 

/ y =  Yc) where 1 -  a+, u,' =p, a preset constant. The 
L 

parameters Y ,  k,and c are determined from the 

ea uat ion 

evaluated at the last three points of integration. 

The quantity 

d, = W y ,  v' (31 

is computed by extrapolation of F to U=v. 
Initial estimates of a. and E- are given by 

The differential equations are integrated and the two parameters 

i, are evaluated ( i = I ,  x. as described above; '*+" 

refers to y 8, Cmo, r4 8, e m  Ao). Next, a numerical 

minimization procedure is employed to find the roots of d ,  as 

I f  (1 

1 

-16- 



I 
funct ions of A, and E ,  . F i n a l l y ,  t he  s o l u t i o n  pe r t a in -  

ing t o  t h e  c o r r e c t  values  of 4, 
t 

and E ,  is  determined. 

. 

I 
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1. I n  t h e  second paragraph on p .  11, change "r" t o  "nl' i n  t h e  
f o u r t h  sentence.  

2 .  Replace pp. 8-10 by the following: 

111. CONFIGURATION OF THE DIVIDING STREAMLINE 

Consider a c y l i n d r i c a l  coordinate  system (n ,  r ,  13 ) with velo- 

c i t y  components (v,  u ,  w ) ,  loca ted  a t  t h e  s t agna t ion  po in t  with 

n - a x i s  perpendicular  t o  t h e  su r face  (Figure 1). 

Fiqure 1. Confiqurat ion of Coordinates a t  t h e  Staqnat ion Poin t  

W e  assume t h a t  it is  poss ib le  t o  expand t h e  v e l o c i t y  components 

i n  Taylor series i n  r and n i n  t h e  v i c i n i t y  of the s t agna t ion  poin t :  

v = f ( e ) r  + c ( e ) n ,  
u = a ( 8 ) r  + d ( p ) n ,  
w = b ( B ) r  + e ( 8 ) n .  

But f ( e )  = 0 because v = 0 a t  n = 0 ,  and c (  8) = c = cons tan t  

because otherwise v would not be single-valued along t h e  n - a x i s .  
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The v o r t i c i t y  i s  given by 

i n  t h e  (n,  r ,  8 ) d i r e c t i o n s ,  or 

The momentum equat ion (F’, P) f’ =-‘ I71 g ives  p = p , = le 
because of t h e  vanishing ve loc i ty ,  and s i m i l a r l y  t h e  equat ion of 

conservat ion of s t agna t ion  enthalpy h + $ 8 

= 0 
P 

t 
= H (cons tan t )  g ives  

hn = h, - - he = 0. Hence a l l  thermodynamic v a r i a b l e s  -- i n  p a r t i c u l a r ,  

t h e  dens i ty  -- a r e  s t a t i o n a r y  a t  t h e  s t agna t ion  po in t  by reason of 

t h e  equi l ibr ium equat ion of s t a t e .  The con t inu i ty  equat ion then  g ives  

d + e ,  = O  
(4) 

The v o r t i c i t y  equat ion i s  w r i t t e n  i n  t h e  form 

Since t h e  right-hand s i d e  vanishes ,  

V x [ - ’ X X ’ ) =  V X  f‘ V 1 ,  9 f P  



i 
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The equat ion = 0 becomes 

2 b ( e - 4 )  = 9 ,  

so  t h a t  

= u  
(?  

Now (2b - a ) must be cons tan t  i n  order  t h a t  t h e  v o r t i c i t y  component 

i n  t h e  n-d i rec t ion  (equation ( 3 ) )  be single-valued. The equat ion zm= 0 

then  i m p l i e s  

0 

&&-e* = *  

D i f f e r e n t i a t i n g  equat ion (8) w i t h  r e spec t  t o  8 and using t h e  

f i r s t  of equations (4)  t o  e l imina te  b e ,  we  ob ta in  t h e  following d i f f e r -  

e n t i a l  equat ion f o r  a: 

$* t 4 4  + z c  = e .  (9) 



~~ 

. 
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L e t  a (  0 )  = A, b (  0 ) = 0 (assuming a p lane  of symmetry), a(;) = B 

(A and B are t h e  v e l o c i t y  g rad ien t s  i n  two orthogonal d i r e c t i o n s  away 

from t h e  s tagnat ion  po in t  on t h e  s u r f a c e ) .  Then equat ion (9)  has 

t h e  s o l u t i o n  

. 

w h e r e  c = - ( A  + B )  and equat ion (8) y i e l d s  

f o r  t h e  cross-flow g rad ien t .  

The two-dimensional s tagnat ion  po in t  i s  represented by t h e  special 

case  B = 0, I n  gene ra l ,  t h e  s tagnat ion  po in t  has  two axes of symmetry 

on t h e  su r face  ( @ =  0 ,  yL ) .  

Examination of equat ion ( 7 )  and t h e  second of equations (4) i n  

the same way y i e l d s  

& = &,&a + 4, -e) 

A t  8 = 0 ,  equat ion ( 6 )  implies  t h a t  e ( 0 )  = 0 = 4, . 
B # 0 ,  then  eva lua t ion  of equation (6) a t  6 =  % g ives  

I f  i n  add i t ion  

d = e  5 0  

f o r  a l l  6. If t h e  s t agna t ion  point  i s  two-dimensional, on t h e  o ther  

hand, t h i s  conclusion cannot be drawn. 

I n  a three-dimensional flow, t h e r e f o r e ,  t h e r e  a r e  two a l t e r n a t i v e s .  

F i r s t ,  t h e  flow i n  the neighborhood of t h e  s tagnat ion  poin t  i s  a n a l y t i c  



I . 
c 

4 

. 

L 

- 5 -  

(i .e. ,  can be expanded i n  power series).  Then un le s s  B = 0 ,  a l l  

three components of t h e  v o r t i c i t y  a t  the s t agna t ion  po in t  are zero,  

and the ve loc i ty  components i n  the neighborhood of the s t agna t ion  

p o i n t  have the  f o r m  

u = a ( e ) r ,  

w = b(e) r ,  
v =  cn , 

where a and b a r e  given by equations (10) and (11). 

(12) 

T h e  outflow 

v e l o c i t y  u and the c r o s s  flow w vanish along the a x i s  perpendicular  

t o  the body, and the s t agna t ion  s t reaml ine  is  perpendicular  t o  the 

s u r f a c e ,  I f  B = 0 ,  however (two-dimensional f l ow) ,  t h i s  i s  not so, 

and t h e  s tagnat ion  s t r e a m l i n e  subtends an angle t o  the su r face  w h i c h  

i s  dependent on the way it passes through the shock r a t h e r  t han  on 

condi t ions  near t h e  s'caynaiioii poifit.  

The second p o s s i b i l i t y  i s  that t he  flow does not  have an ana- 

l y t i c  s o l u t i o n  near the s tagnat ion  p o i n t .  This p o s s i b i l i t y  i s  re- 

jected i n  the p resen t  context  because it i s  incons i s t en t  w i t h  the 

assumption t h a t  the flow va r i ab le s  can be approximated by a n a l y t i c  

f u n c t i o n s ,  


